
Security Assessment

Style Protocol
CertiK Assessed on Jun 3rd, 2024

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

3 Major 3 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

1 Medium 1 Acknowledged Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

3 Minor 3 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

2 Informational 2 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY STYLE PROTOCOL

CertiK Assessed on Jun 3rd, 2024

Style Protocol

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Arbitrum (ARB) | Ethereum

(ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 06/03/2024

KEY COMPONENTS

N/A

CODEBASE
https://github.com/STYLE-Protocol/STYLE-Protocol-contracts

View All in Codebase Page

COMMITS
0391d9b1cbc103a3ac8ebd0c1dbd7610529786ae

STYLE token: 0x9e91f79070926a191e41367d40ad582686f9e66d

View All in Codebase Page

9
Total Findings

0
Resolved

0
Mitigated

0
Partially Resolved

9
Acknowledged

0
Declined

https://github.com/STYLE-Protocol/STYLE-Protocol-contracts
https://github.com/STYLE-Protocol/STYLE-Protocol-contracts/tree/0391d9b1cbc103a3ac8ebd0c1dbd7610529786ae
https://etherscan.io/token/0x9e91f79070926a191e41367d40ad582686f9e66d#code

TABLE OF CONTENTS STYLE PROTOCOL

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

STL-04 : Centralization Risks in STYLE-vesting-flattend.sol

STL-05 : Potential Phishing Attacks

STY-02 : Initial Token Distribution

STL-02 : Risk of Overflow/Underflow Due to Extensive Use of unchecked

STL-08 : Check Effect Interaction Pattern (Out-of-Order Events)

STL-09 : Check Effect Interaction Pattern Violated (Incrementing State)

STL-10 : Missing Input Validation on `VestingWallet.initialize()`

STL-11 : Unused Interface

STY-01 : Deprecate ERC777 Implementation

Optimizations

STL-01 : `_owner` unused in `VestingWalletHolder`

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS STYLE PROTOCOL

CODEBASE STYLE PROTOCOL

Repository

https://github.com/STYLE-Protocol/STYLE-Protocol-contracts

Commit

0391d9b1cbc103a3ac8ebd0c1dbd7610529786ae

STYLE token: 0x9e91f79070926a191e41367d40ad582686f9e66d

CODEBASE STYLE PROTOCOL

https://github.com/STYLE-Protocol/STYLE-Protocol-contracts
https://github.com/STYLE-Protocol/STYLE-Protocol-contracts/tree/0391d9b1cbc103a3ac8ebd0c1dbd7610529786ae
https://etherscan.io/token/0x9e91f79070926a191e41367d40ad582686f9e66d#code

AUDIT SCOPE STYLE PROTOCOL

2 files audited 2 files with Acknowledged findings

ID Repo File SHA256 Checksum

STY

STYLE-

Protocol/STYLE-

Protocol-

contracts

contracts/STYLE-Token.sol
27fa3d4b441efd8e35e5b2118846a04b33348

6d847c872c10a65a721245cd163

STL

STYLE-

Protocol/STYLE-

Protocol-

contracts

contracts/STYLE-vesting-flattend.sol
3f4b42be4f490dc89ad7fca137c1f4bfb5e6b48

fc6c2168295f6ca3dece4e825

AUDIT SCOPE STYLE PROTOCOL

APPROACH & METHODS STYLE PROTOCOL

This report has been prepared for Style Protocol to discover issues and vulnerabilities in the source code of the Style

Protocol project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS STYLE PROTOCOL

FINDINGS STYLE PROTOCOL

This report has been prepared to discover issues and vulnerabilities for Style Protocol. Through this audit, we have

uncovered 9 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

STL-04
Centralization Risks In STYLE-Vesting-

Flattend.Sol
Centralization Major Acknowledged

STL-05 Potential Phishing Attacks Design Issue Major Acknowledged

STY-02 Initial Token Distribution Centralization Major Acknowledged

STL-02
Risk Of Overflow/Underflow Due To

Extensive Use Of Unchecked

Incorrect

Calculation
Medium Acknowledged

STL-08
Check Effect Interaction Pattern (Out-Of-

Order Events)
Concurrency Minor Acknowledged

STL-09
Check Effect Interaction Pattern Violated

(Incrementing State)
Concurrency Minor Acknowledged

STL-10
Missing Input Validation On

VestingWallet.initialize()
Volatile Code Minor Acknowledged

STL-11 Unused Interface Coding Issue Informational Acknowledged

STY-01 Deprecate ERC777 Implementation Design Issue Informational Acknowledged

FINDINGS STYLE PROTOCOL

9
Total Findings

0
Critical

3
Major

1
Medium

3
Minor

2
Informational

STL-04 CENTRALIZATION RISKS IN STYLE-VESTING-
FLATTEND.SOL

Category Severity Location Status

Centralization Major
contracts/STYLE-vesting-flattend.sol: 1634, 1648, 1662, 167

4
Acknowledged

Description

In the contract VestingWallet the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and:

steal all the tokens from the wallet;

pause contract and prevent users from retrieving their tokens;

Function

External Calls

External Calls

Authenticated Role

Function State Variables

External Calls

Function State Variables

_withdraw

IERC20.balanceOf

IERC20.safeTransfer

Address.sendValue

_owner

_pause

_unpause

_paused

_paused

STL-04 STYLE PROTOCOL

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

STL-04 STYLE PROTOCOL

Alleviation

[Style team, 2024/05/17]: In the initial setup it is easier and faster to have an individual issue smart contracts.

Currently, the decision-making on critical contract functions, including those that create vesting schedules is led by a BOD.

We plan to transition the control over critical contract functions, including those that create vesting schedules, to a DAO

governed by our community leaders who can be voted and appointed.

This step will not only decentralize authority but also enhance user involvement and transparency in decision-making

processes.

Regarding Function: Pause/UnPause:

This is a security measure put in place to allow adjusting of contracts in case of fraudulent attacks or lost wallets from

Investors and other Parties that receive vesting.

We can revoke ongoing vestings and re-issue them as failsafe for investors or community funds that are vested and

attacked.

STL-04 STYLE PROTOCOL

STL-05 POTENTIAL PHISHING ATTACKS

Category Severity Location Status

Design

Issue
Major

contracts/STYLE-vesting-flattend.sol: 1414~1421, 1634~1635, 1648

~1649, 1662~1663, 1674~1675, 1915~1916, 1940~1941
Acknowledged

Description

The following elements can be exploited to drain tokens from wallets:

1. VestingWallet.onlyOwner() relies on tx.origin , which is susceptible to phishing attacks.

2. VestingWalletHolder.withdraw() has no access control, making it vulnerable.

It is also possible to use VestingWalletHolder.switchPause() to pause or unpause wallets through a phishing attack.

Scenario

Consider the following scenario:

Bob has created multiple VestingWallet contracts, where he is considered the owner of those wallets. As the owner, Bob

has control over the VestingWallet.withdraw() function.

Alice, a malicious user, creates a contract that calls the withdraw() function for each VestingWallet that Bob has control

over.

She tricks Bob into calling her malicious function, which then executes the withdraw() functions of all the wallets Bob

owns.

Since ownership is based on tx.origin , all the withdraw() calls succeed, and the vested tokens are transferred to an

address controlled by Alice.

Recommendation

We recommend replacing tx.origin in onlyOwner with msg.sender for more secure ownership verification and adding

appropriate access controls to the withdraw() functions to ensure only authorized entities can withdraw tokens.

The appropriate access controls should also be applied to the switchPause() function.

Alleviation

[Style team, 2024/05/17]: A phishing scenario assumes the owner of the vesting contract will interact with a fake contract

that will execute a transaction. However, this case will never happen as the Wallet that will interact with the vesting contract is

STL-05 STYLE PROTOCOL

only one wallet (controlled by BOD and DAO) and it will never interact with any other contract.

In our security measures. Contracts are only created from the functional wallets of distribution based on our own tech. The

wallet is not in use operationally.

Interaction is only with contracts that are related to each wallet. For example, the Vesting contract is deployed by the Vesting

Allocation Wallet, and the Airdrop contract will be deployed by Ecosystem Airdrop Wallet. Each wallet will not interact with

any other contract outside of our own Tech.

Additionally, the unused liquidity on Wallets is Vested.

STL-05 STYLE PROTOCOL

STY-02 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization Major contracts/STYLE-Token.sol: 11~13, 13 Acknowledged

Description

All of the STYLE tokens are sent to the contract deployer and then some tokens are transferred to several hardcoded

addresses. There is no restriction on the initial amount the deployer can mint, this is a centralization risk because the

deployer can distribute tokens without obtaining the community's consensus. Any compromise to these addresses may allow

a hacker to steal and sell tokens on the market, resulting in severe damage to the project.

Recommendation

It is recommended that the team be transparent regarding the initial token distribution process. The token distribution plan

should be published in a public location that the community can access. The team should make efforts to restrict access to

the private keys of the deployer account or EOAs. A multi-signature (⅔, ⅗) wallet can be used to prevent a single point of

failure due to a private key compromise. Additionally, the team can lock up a portion of tokens, release them with a vesting

schedule for long-term success, and deanonymize the project team with a third-party KYC provider to create greater

accountability.

Alleviation

[CertiK, 2024/06/04]: During deployment of the STYLE token, the total supply of 920 000 000 tokens (100%) has been

minted and distributed as follow:

Address Amount Percentage Type

Seed Round
0xdc5554F864905bdbD183Fb8

324dDD1Ed72E8685E
92,000,000 10.00% EOA

Private Round
0x779bAaFd5afB91Edcdf64146

E57df001dE8EF7Ae
59,800,000 6.50% EOA

Public Round
0x44EC9A93759a283a9019406

eA219636225c63F7c
80,040,000 8.70% EOA

KOL Round
0xBA5505Df24055879d9b31d3

C82dDCaC18b84242f
26,680,000 2.90% EOA

STY-02 STYLE PROTOCOL

https://etherscan.io/tx/0xbc98290241c3116c7d5ae936f05f8d0362ed118f03df878defebb4a25c7014fc
https://etherscan.io/token/0x9e91f79070926a191e41367d40ad582686f9e66d
https://etherscan.io/address/0xdc5554F864905bdbD183Fb8324dDD1Ed72E8685E
https://etherscan.io/address/0x779bAaFd5afB91Edcdf64146E57df001dE8EF7Ae
https://etherscan.io/address/0x44EC9A93759a283a9019406eA219636225c63F7c
https://etherscan.io/address/0xBA5505Df24055879d9b31d3C82dDCaC18b84242f

Address Amount Percentage Type

Team and
Advisors

0x82f73083dd932c207549d18c

b439D70870B0CB6d
110,400,000 12.00% EOA

Treasury
0x1638C018FBc136de0265927

DeA1c76802f8454b4
128,800,000 14.00% EOA

Ecosystem
0x36b758a181640C8caCc8039

CAa58f464EF302b16
92,000,000 10.00% EOA

Alpha Claim
0x396F6a18c98BFf86D3850F6

46F5794F5a18B9b26
92,000,000 10.00% EOA

Strategic
Claim

0x3FB950AD30CA169B498AF2

0BBDEc29cE16aFD387
92,000,000 10.00% EOA

Marketing
0xa234a5B2458E5C24C30D40

1a4a36Df516B68CeB5
66,240,000 7.20% EOA

Liquidity
0x90f782bDEF80eF43Ce8dDC

e6a583838426231882
80,040,000 8.70% EOA

STY-02 STYLE PROTOCOL

https://etherscan.io/address/0x82f73083dd932c207549d18cb439D70870B0CB6d
https://etherscan.io/address/0x1638C018FBc136de0265927DeA1c76802f8454b4
https://etherscan.io/address/0x36b758a181640C8caCc8039CAa58f464EF302b16
https://etherscan.io/address/0x396F6a18c98BFf86D3850F646F5794F5a18B9b26
https://etherscan.io/address/0x3FB950AD30CA169B498AF20BBDEc29cE16aFD387
https://etherscan.io/address/0xa234a5B2458E5C24C30D401a4a36Df516B68CeB5
https://etherscan.io/address/0x90f782bDEF80eF43Ce8dDCe6a583838426231882

STL-02 RISK OF OVERFLOW/UNDERFLOW DUE TO EXTENSIVE
USE OF UNCHECKED

Category Severity Location Status

Incorrect

Calculation
Medium

contracts/STYLE-vesting-flattend.sol: 1531~1532, 1549~1550,

1571~1572, 1606~1607, 1815~1816, 1853~1854, 1876~1877,

1895~1896, 1920~1921, 1944~1945

Acknowledged

Description

The contract makes frequent use of unchecked blocks to bypass overflow/underflow checks. However, many of these

usages rely on hidden assumptions about the values involved, making the code fragile and prone to potential issues.

Scenario

Here are a few examples:

In VestingWallet._release() , if tokens have been withdrawn and then revested, _vestedAmount(token,

uint48(block.timestamp)) - _erc20Released[token] could underflow;

In VestingWallet._vestedAmount() , start_ + duration_ could overflow.

In VestingWallet._vestedAmount() , IERC20(token).balanceOf(address(this)) + _erc20Released[token]

could overflow.

Recommendation

We recommend:

Avoid using unchecked blocks unless necessary and their behavior is documented and thoroughly tested;

Adding explicit checks to ensure values do not underflow or overflow;

If unchecked blocks are required for performance reasons, document the assumptions that prevent

underflow/overflow issues.

Alleviation

[Style team, 2024/05/17]: We had unchecked blocks made primarily to optimize contract performance.

Given the gas-intensive nature of blockchain transactions, especially on networks like Ethereum, it is sometimes necessary

to find a balance between absolute security (through rigorous checks for overflows and underflows) and efficient gas usage,

which directly impacts transaction costs for users.

STL-02 STYLE PROTOCOL

STL-08 CHECK EFFECT INTERACTION PATTERN (OUT-OF-ORDER
EVENTS)

Category Severity Location Status

Concurrency Minor
contracts/STYLE-vesting-flattend.sol: 1535, 1537, 1553, 1555, 163

6, 1638, 1650, 1652, 1860, 1864
Acknowledged

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

This finding is considered minor because the reentrancy only causes out-of-order events.

External call(s)

1553 IERC20(token).safeTransfer(_beneficiary, releasable);

This function call executes the following external call(s).

In SafeERC20._callOptionalReturn ,

returndata = address(token).functionCall(data)

In Address.functionCallWithValue ,

(success,returndata) = target.call{value: value}(data)

Events emitted after the call(s)

1555 emit ERC20Release(token, releasable);

External call(s)

1636 Address.sendValue(payable(to), amount);

This function call executes the following external call(s).

In Address.sendValue ,

STL-08 STYLE PROTOCOL

(success,None) = recipient.call{value: amount}("")

Events emitted after the call(s)

1638 emit EtherWithdraw(amount);

External call(s)

1650 IERC20(token).safeTransfer(to, amount);

This function call executes the following external call(s).

In SafeERC20._callOptionalReturn ,

returndata = address(token).functionCall(data)

In Address.functionCallWithValue ,

(success,returndata) = target.call{value: value}(data)

Events emitted after the call(s)

1652 emit ERC20Withdraw(token, amount);

External call(s)

1860 IVestingWallet(clone).initialize(beneficiary, start, duration);

Events emitted after the call(s)

1864 emit CreateVesting(clone);

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts.

Here placing the external call at the end of the function would resolve this finding.

Alleviation

STL-08 STYLE PROTOCOL

https://docs.soliditylang.org/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern

[Style team, 2024/05/17]: The potential reentrancy in our contract does not compromise the integrity of transactions but may

cause out-of-order events.

Given this limited impact and the controlled nature of the contract interactions, we assess the risk as manageable within our

operational framework and each transaction that could potentially involve a reentrancy attack is subject to oversight and

approval by our Decentralized Autonomous Organization (DAO).

STL-08 STYLE PROTOCOL

STL-09 CHECK EFFECT INTERACTION PATTERN VIOLATED
(INCREMENTING STATE)

Category Severity Location Status

Concurrency Minor contracts/STYLE-vesting-flattend.sol: 1860, 1861, 1862 Acknowledged

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

This finding is considered minor because the state variable is only incremented or decremented. So, the effect of out-of-order

increments may be unobservable after transaction. However, the reentrancy vulnerability may still cause other issues in the

middle of transaction.

External call(s)

1860 IVestingWallet(clone).initialize(beneficiary, start, duration);

State variables written after the call(s)

1861 _contracts[msg.sender][_vestingcounts[msg.sender]] = clone;

1862 ++_vestingcounts[msg.sender];

Recommendation

We recommend using the Checks-Effects-Interactions Pattern:

here the following code snippet:

1857 address payable clone = payable(

1858 Clones.clone(_vestingWalletImplementation)

1859);

1860 IVestingWallet(clone).initialize(beneficiary, start, duration);

1861 _contracts[msg.sender][_vestingcounts[msg.sender]] = clone;

1862 ++_vestingcounts[msg.sender];

1863

1864 emit CreateVesting(clone);

STL-09 STYLE PROTOCOL

https://docs.soliditylang.org/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern

should be rewritten

 address payable clone = payable(

 Clones.clone(_vestingWalletImplementation)

);

 _contracts[msg.sender][_vestingcounts[msg.sender]] = clone;

 ++_vestingcounts[msg.sender];

 emit CreateVesting(clone);

 IVestingWallet(clone).initialize(beneficiary, start, duration);

Alleviation

[Style team, 2024/05/17]: The potential reentrancy in our contract does not compromise the integrity of transactions and can

only cause out-of-order events.

STL-09 STYLE PROTOCOL

STL-10 MISSING INPUT VALIDATION ON
VestingWallet.initialize()

Category Severity Location Status

Volatile Code Minor contracts/STYLE-vesting-flattend.sol: 1461~1462 Acknowledged

Description

In VestingWallet.initialize() , no check is made on the _beneficiary address.

Scenario

If _beneficiary == address(0) then the vested ETH could be lost.

If _beneficiary == address(this) then all the vested tokens might get stuck in the contract.

Recommendation

We recommend adding checks to prevent any issue with the _beneficiary address.

Alleviation

[Style team, 2024/05/17]: We have strict operational controls in place that ensure the accuracy and validity of _beneficiary

addresses before they are inputted into the system.

These controls are part of our standard security procedures, which involve multiple checks and balances during the

initialization phase.

STL-10 STYLE PROTOCOL

STL-11 UNUSED INTERFACE

Category Severity Location Status

Coding Issue Informational contracts/STYLE-vesting-flattend.sol: 1127 Acknowledged

Description

The smart contract contains one or more inteface definitions that are not used, which can lead to unnecessary complexity

and reduced maintainability.

1127 interface IERC20Permit {

IERC20Permit is declared but never used.

Recommendation

It is advised to ensure that all necessary intefaces are used, remove redundant interfaces.

Alleviation

[Style team, 2024/05/17]: It does not compromise the integrity of the contract.

STL-11 STYLE PROTOCOL

STY-01 DEPRECATE ERC777 IMPLEMENTATION

Category Severity Location Status

Design Issue Informational contracts/STYLE-Token.sol: 7~8 Acknowledged

Description

The ERC777 standard is not recommended due to concerns regarding over-engineering, potential security vulnerabilities,

and unnecessary complexity.

Recommendation

We recommend using ERC20 standard as explained here.

Alleviation

[Style team, 2024/05/17]: While ERC777 may introduce additional complexity, it also aligns with broader trends in the

blockchain ecosystem toward interoperability and standardization. By adopting ERC777, we position our contracts to

seamlessly integrate with future DEXs and other platforms that may leverage its capabilities such as operators.

STY-01 STYLE PROTOCOL

https://ethereum.org/en/developers/docs/standards/tokens/erc-777/#warning

OPTIMIZATIONS STYLE PROTOCOL

ID Title Category Severity Status

STL-01 _owner Unused In VestingWalletHolder Volatile Code Optimization Acknowledged

OPTIMIZATIONS STYLE PROTOCOL

https://acc.audit.certikpowered.info/project/67eed540-0615-11ef-9e3a-f33e1586f23f/report/new?fid=1715370674992

STL-01 _owner UNUSED IN VestingWalletHolder

Category Severity Location Status

Volatile

Code
Optimization

contracts/STYLE-vesting-flattend.sol: 1793~1794, 1798~180

4, 1845~1846
Acknowledged

Description

In the contract VestingWalletHolder , a state variable _owner is defined:

1793 address private immutable _owner;

it is set during the deployment

1843 constructor() {

1844 _vestingWalletImplementation = payable(address(new VestingWallet()));

1845 _owner = msg.sender;

1846 }

And it is never used even if an onlyOwner modifier is defined:

1798 modifier onlyOwner() {

1799 if (_owner == msg.sender) {

1800 _;

1801 } else {

1802 revert ImproperOwner();

1803 }

1804 }

Recommendation

We recommend either:

removing the code snippets above if they are not meant to be used;

using the onlyOwner in the relevant functions and adding a mechanism to transfer or renounce ownership to allow

a centralization risk mitigation strategy, if ownership is meant to be used.

Alleviation

[Style team, 2024/05/17]: It doe not compromise the integrity of the contract. It was added to limit the contract to only one

owner who can create vesting.

STL-01 STYLE PROTOCOL

FORMAL VERIFICATION STYLE PROTOCOL

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of Standard Pausable Properties

We verified partial properties of the public interfaces of those token contracts that implement the Pausable interface. This

involves:

function paused that returns the if the contract is paused,

function pause that pauses the contract, and

function unpause that unpauses the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

pausable-paused-succeed-normal paused Function Always Succeeds

pausable-pause-correct Function pause Always Pauses

pausable-unpause-correct Function unpause Always Unpauses

Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract VestingWallet (contracts/STYLE-vesting-flattend.sol) In Commit
0391d9b1cbc103a3ac8ebd0c1dbd7610529786ae

FORMAL VERIFICATION STYLE PROTOCOL

Verification of Standard Pausable Properties

Detailed Results for Function paused

Property Name Final Result Remarks

pausable-paused-succeed-normal True

Detailed Results for Function pause

Property Name Final Result Remarks

pausable-pause-correct True

Detailed Results for Function unpause

Property Name Final Result Remarks

pausable-unpause-correct True

FORMAL VERIFICATION STYLE PROTOCOL

APPENDIX STYLE PROTOCOL

Finding Categories

Categories Description

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Incorrect

Calculation

Incorrect Calculation findings are about issues in numeric computation such as rounding errors,

overflows, out-of-bounds and any computation that is not intended.

Concurrency
Concurrency findings are about issues that cause unexpected or unsafe interleaving of code

executions.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

and may result in vulnerabilities.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

APPENDIX STYLE PROTOCOL

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed Standard Pausable Properties Properties

Properties related to function paused

pausable-paused-succeed-normal

The paused function must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function pause

pausable-pause-correct

All non-reverting invocations of pause() must pause the contract.

Specification:

APPENDIX STYLE PROTOCOL

ensures this.paused();

Properties related to function unpause

pausable-unpause-correct

All non-reverting invocations of unpause() must unpause the contract.

Specification:

ensures !this.paused();

APPENDIX STYLE PROTOCOL

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER STYLE PROTOCOL

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER STYLE PROTOCOL

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Style Protocol Security Assessment CertiK Assessed on Jun 3rd, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

